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Introducing  a new self-supervised learning 
paradigm for graph anomaly detection 

 

GDSA 
 



Stronger detection performance and  
higher computational efficiency 

Better detection performance 
Less time complexity 
Smaller memory usage 
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(Background) What is Graph Anomaly Detection (GAD) ? 
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Structural Anomaly 

Contextual Anomaly 
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 Insufficient detection effect (Not directly model the anomaly structure) 

 Inefficient calculation (Higher  time complexity and Larger memory usage) 

at least O(M) 

Existing Problems of Graph Anomaly Detection (GAD) ? 
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 To directly model the topology of the graph  

 To improve computational efficiency  

 To improve Generalization and Scalability 

Rethinking Graph Anomaly Detection (GAD) ? 
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• Q1: How to explicitly model the abnomal structure in the graph? 

Rethinking Graph Anomaly Detection (GAD) ? 
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• Q2: How to effectively improve the computational efficiency of graph anomaly detection? 

at least O(M) 
O(1) 

Rethinking Graph Anomaly Detection (GAD) ? 

O(1) 
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 Generalization: Four benchmark datasets of different scales and types (two citation network 

datasets and two social network datasets) 

 Scalability: The large-scale dataset 

 

Rethinking Graph Anomaly Detection (GAD) ? 

• Q3: How to ensure the generalization and scalability of the model? 
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GDSA 



Simulate incomplete links and wrong links 

 Indirect disturbance (View 1)：  Direct disturbance (View 2)： 

Simulate wrong links to increase the  
richness of structural disturbance 

Multi-view Structure Disturbance 
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 How is the value of the number of edges per round of disturbance k determined in View 2 
structure disturbance? 

Graph 𝒢 = (𝒱, ℰ, 𝐗) 

Node set 𝒱 = *𝑣1, … , 𝑣𝑚+         
Edge set ℰ = *𝑒1, … , 𝑒𝑛+ 

• Random sampling with put-back of edges in 𝓔 
• Selecting k edges per round, for a total of r rounds  

𝑬 𝒎 = 𝟏 −
𝒏 − 𝒌

𝒏

𝒓

 

Multi-view Structure Disturbance 
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Group Discrimination 
 Feature extraction and transformation 
 Objective: To extract the features of positive and negative groups and convert them into 

node scalar information for group discrimination. 

 Encoder：Extract spatial features in the graph 

𝐄𝑙 = 𝐺𝐶𝑁 𝐀𝑙 , 𝐗𝑙   

Readout：Dimensionality reduction is performed for embedding  
in the positive and negative groups 

 𝐞𝑙 = 𝜎 𝐄𝑙

 𝑠𝑖 = 𝑀𝐿𝑃 𝐄𝑙 =  

ℎ

𝑗=1

𝐞𝑙,𝑖, 𝑗-
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 Identifying node scalar information to complete graph anomaly detection 
 Time complexity is only O(1) 

𝓛𝑩𝑪𝑬 =
𝟏

𝟐𝒎
  

𝟐𝒎

𝒊=𝟏

𝒚𝒊𝒍𝒐𝒈 𝒔𝒊 + 𝟏 − 𝒚𝒊 𝒍𝒐𝒈 𝟏 − 𝒔𝒊  

BCEloss 

 In an ideal state 

𝒔𝒊 of abnormal nodes：Positive 
𝒔𝒊 of normal nodes： Negative 
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Group Discrimination 



Methods Cora Citeseer BlogCatalog Flickr 

CoLA(TNNLS 2021) 0.9338 0.9055 0.6804 0.6365 

ANEMONE(CIKM 2021) 0.9706 0.9655 0.6681 0.6180 

SL-GAD(TKDE 2021) 0.9035 0.9127 0.6477 0.6144 

AdONE(WSDM 2020)  0.9525 0.9922 0.6144 0.3754 

GANN(CIKM 2020)  0.9841 0.9851 0.6051 0.6324 

ResGCN(DSAA 2021) 0.6117 0.5135 0.6083 0.6113 

GDSA(ours) 1.0000* 1.0000* 0.7163 0.8191 

Experiment Results 

 28.7%  

 Generalization-- Detection performance  
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          Cora Citeseer BlogCatalog Flickr 

 Generalization-- Detection performance  
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Experiment Results 



 Generalization-- computational efficiency 

On the Citeseer dataset 

GDSA compared to GANN : improved 5.3×  
GDSA compared to SL-GAD : improved 87.8×  
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Experiment Results 



 Ablation study-- Detection performance  

  Cora Citeseer BlogCatalog Flickr 

GDSA w/o both 0.0528±0.0069 0.2410±0.0734 0.6303±0.0024 0.7685±0.0176 

GDSA w/o view 1 0.0550±0.0070 0.3004±0.1339 0.6325±0.0028 0.7739±0.0084 

GDSA w/o view 2 1.0000 ±0.0000 1.0000 ±0.0000 0.7146±0.1343 0.8015±0.0569 

GDSA(ours) 1.0000 ±0.0000 1.0000 ±0.0000 0.7163 ±0.0069 0.8191 ±0.0375 
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Experiment Results 



 Ablation study-- Latent space distribution 
Cora Citeseer 

BlogCatalog Flickr 
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Experiment Results 



 Parameter analysis 
Cora Citeseer 

BlogCatalog Flickr 
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Experiment Results 



Methods AUC Memory usage Training time Testing time 

CoLA(2000 epo) 0.8291 8961MB 78h24m25s 7h18m43s 

GDSA(1 epo) 0.9096 3414MB|61.9% 3m59s|1181.0× 5.1973s|5064.7× 

GDSA(100 epo) 0.9867 4850MB|45.9% 8h11m32s|9.6× 5.1973s|5064.7× 

 Scalability-- Detection performance and Computational efficiency (ogbn-arxiv) 

 19.0%  

 9.7%  
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Experiment Results 



 Scalability-- Detection performance and Computational efficiency (ogbn-arxiv) 
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Experiment Results 



Conculsion and Future Works 

 Algorithmic ideas: An efficient self-supervised group discrimination paradigm with structure - 

Aware for graph anomaly detection is proposed. 

 Practical significance: GDSA breaks through the barrier of graph anomaly detection that it is 

difficult to directly model anomalous structures. 

 Future Works: 

 • Rethinking the graph anomaly detection problem from more angles. 
• Explore frameworks that can detect different types of anomalies in graph anomaly 

detection more comprehensively and efficiently. 
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