



#### Rethinking graph anomaly detection: A self-supervised Group Discrimination paradigm with Structure-Aware



#### Junyi Yan, Enguang Zuo, Chen Chen, Cheng Chen, Jie Zhong, Tianle Li, Xiaoyi Lv\*

Xinjiang University, China Email: yjy@stu.xju.edu.cn 13/7/2023



IEEE International Conference on Multimedia and Expo 2023 Brisbane Convention & Exhibition Centre 10-14 July 2023

\*Corresponding author

# Introducing a new self-supervised learning paradigm for graph anomaly detection



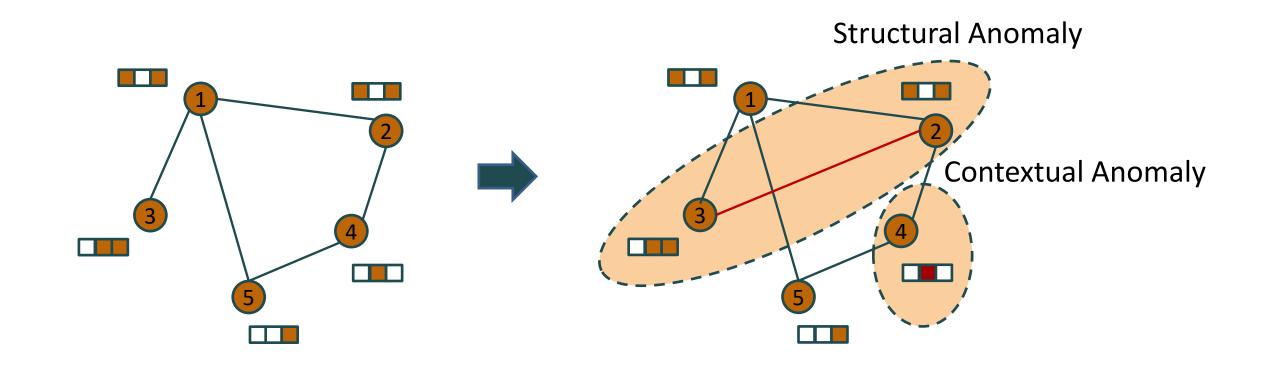
Stronger detection performance and higher computational efficiency

Better detection performance
 Less time complexity
 Smaller memory usage

- Part1: (Background) What is Graph Anomaly Detection (GAD)?
- Part2: Existing Problems of Graph Anomaly Detection (GAD)
- Part3: Rethinking Graph Anomaly Detection (GAD)
- Part4: Structure Disturbance-A new approach for Graph Anomaly Detection (GAD)
- Part5: Group Discrimination-Conversion graph anomaly detection (GAD)
- Part6: Experiment Results
- Prat7: Conculsion and Future Works



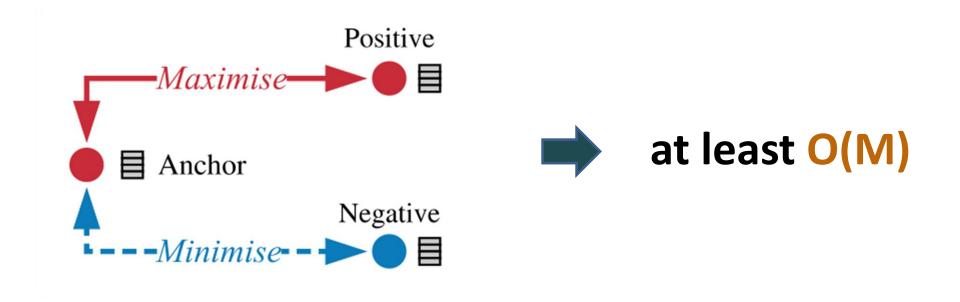
### (Background) What is Graph Anomaly Detection (GAD) ?





### **Existing Problems of Graph Anomaly Detection (GAD) ?**

- Insufficient detection effect (Not directly model the anomaly structure)
- Inefficient calculation (Higher time complexity and Larger memory usage)

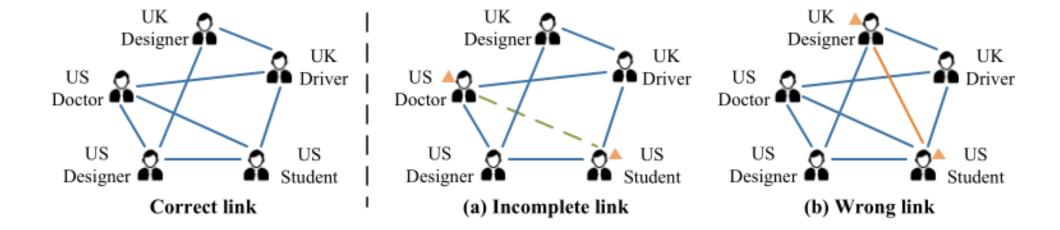




- > To directly model the topology of the graph
- > To improve computational efficiency
- > To improve Generalization and Scalability

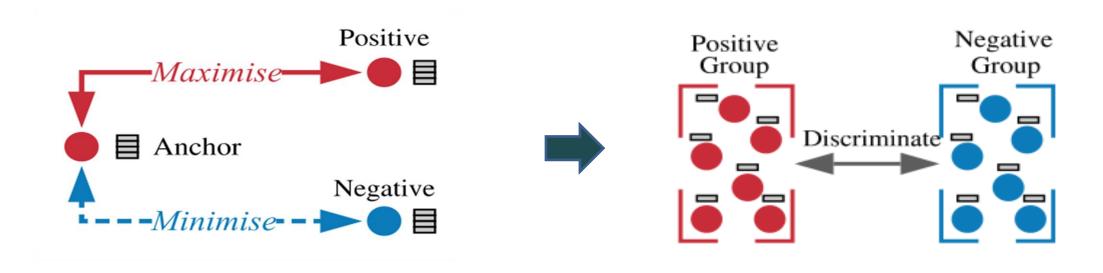


• Q1: How to explicitly model the abnomal structure in the graph?





• Q2: How to effectively improve the computational efficiency of graph anomaly detection?

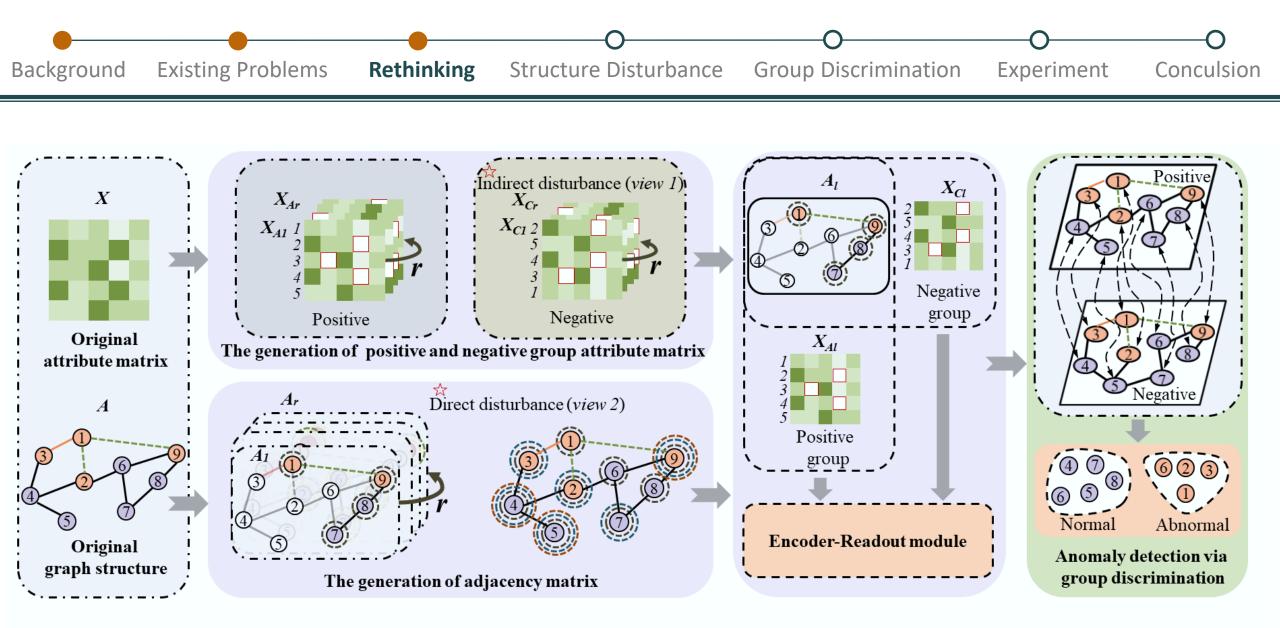


#### at least O(M)



• Q3: How to ensure the generalization and scalability of the model?

- Generalization: Four benchmark datasets of different scales and types (two citation network datasets and two social network datasets)
- ✓ Scalability: The large-scale dataset

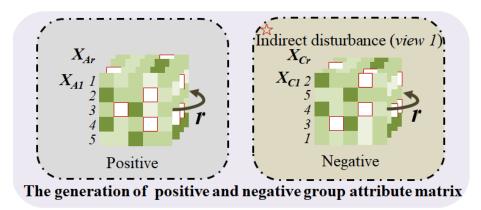


**GDSA** 



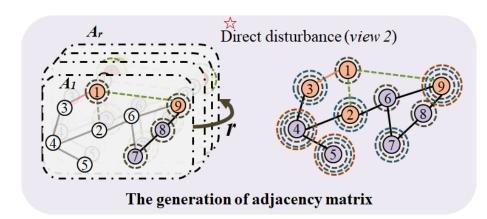
#### **Multi-view Structure Disturbance**

#### ✓ Indirect disturbance (*View 1*):



#### Simulate incomplete links and wrong links

#### ✓ Direct disturbance (*View 2*):



Simulate wrong links to increase the richness of structural disturbance



#### **Multi-view Structure Disturbance**

How is the value of the number of edges per round of disturbance k determined in View 2 structure disturbance?

- Random sampling with put-back of edges in  ${m {\cal E}}$
- Selecting k edges per round, for a total of r rounds

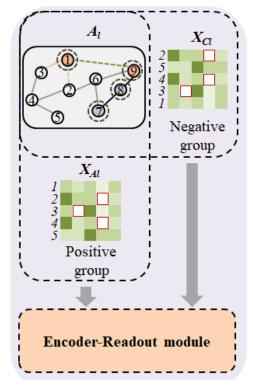
Graph 
$$\mathcal{G} = (\mathcal{V}, \mathcal{E}, \mathbf{X})$$
  
Node set  $\mathcal{V} = \{v_1, \dots, v_m\}$   
Edge set  $\mathcal{E} = \{e_1, \dots, e_n\}$   
 $\mathbf{E}(\mathbf{m}) = \mathbf{1} - \left(\frac{n-k}{n}\right)^n$ 



# **Group Discrimination**

✓ Feature extraction and transformation

Objective: To extract the features of positive and negative groups and convert them into node scalar information for group discrimination.



✓ **Encoder:** Extract spatial features in the graph

 $\mathbf{E}_l = GCN(\mathbf{A}_l, \mathbf{X}_l)$ 

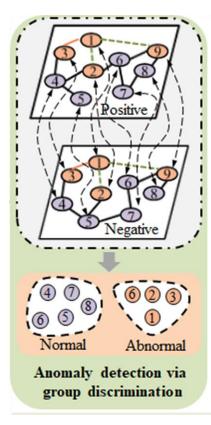
✓ Readout: Dimensionality reduction is performed for embedding in the positive and negative groups

$$\begin{cases} \mathbf{e}_{l} = \sigma(\mathbf{E}_{l}) \\ s_{i} = MLP(\mathbf{E}_{l}) = \sum_{j=1}^{h} \mathbf{e}_{l}[i, j] \end{cases}$$



# **Group Discrimination**

✓ Identifying node scalar information to complete graph anomaly detection
 □ Time complexity is only O(1)



✓ BCEloss

$$\mathcal{L}_{BCE} = \frac{1}{2m} \left( \sum_{i=1}^{2m} y_i \log s_i + (1 - y_i) \log(1 - s_i) \right)$$

✓ In an ideal state

*s<sub>i</sub>* of abnormal nodes: Positive*s<sub>i</sub>* of normal nodes: Negative

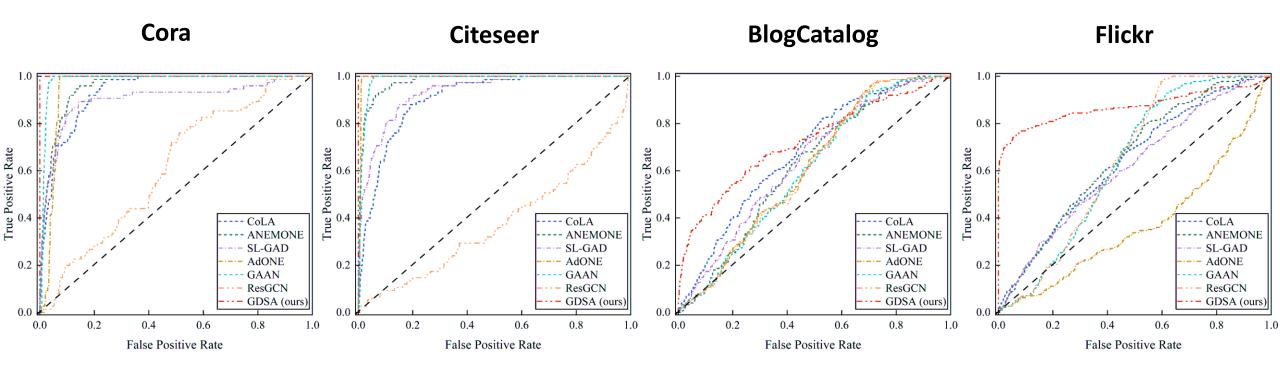


**Generalization**-- Detection performance

| Methods            | Cora    | Citeseer | BlogCatalog | Flickr |
|--------------------|---------|----------|-------------|--------|
| CoLA(TNNLS 2021)   | 0.9338  | 0.9055   | 0.6804      | 0.6365 |
| ANEMONE(CIKM 2021) | 0.9706  | 0.9655   | 0.6681      | 0.6180 |
| SL-GAD(TKDE 2021)  | 0.9035  | 0.9127   | 0.6477      | 0.6144 |
| AdONE(WSDM 2020)   | 0.9525  | 0.9922   | 0.6144      | 0.3754 |
| GANN(CIKM 2020)    | 0.9841  | 0.9851   | 0.6051      | 0.6324 |
| ResGCN(DSAA 2021)  | 0.6117  | 0.5135   | 0.6083      | 0.6113 |
| GDSA(ours)         | 1.0000* | 1.0000*  | 0.7163      | 0.8191 |

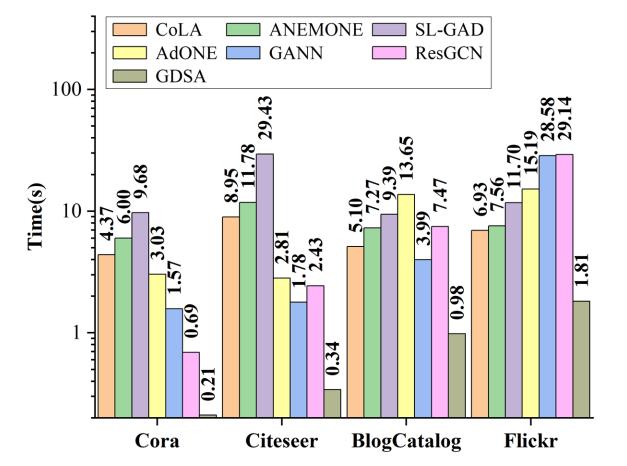


#### **Generalization**-- Detection performance





#### **Generalization**-- computational efficiency



**On the Citeseer dataset** 

GDSA compared to GANN : improved  $5.3 \times$ GDSA compared to SL-GAD : improved  $87.8 \times$ 



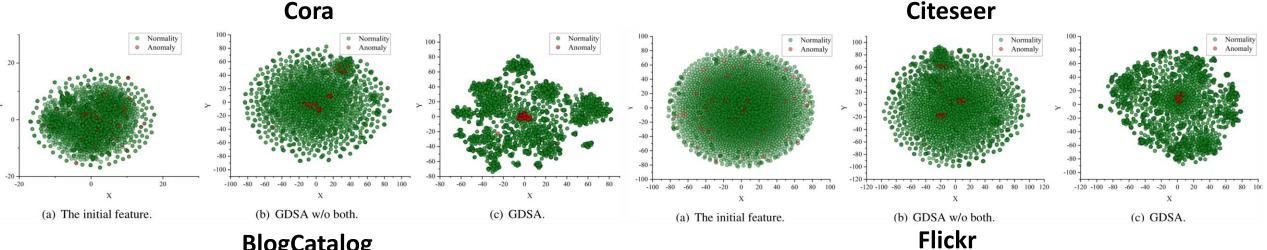
#### **Ablation study--** Detection performance

|                 | Cora                  | Citeseer              | BlogCatalog           | Flickr                |
|-----------------|-----------------------|-----------------------|-----------------------|-----------------------|
| GDSA w/o both   | 0.0528±0.0069         | 0.2410±0.0734         | 0.6303±0.0024         | 0.7685±0.0176         |
| GDSA w/o view 1 | 0.0550±0.0070         | 0.3004±0.1339         | 0.6325±0.0028         | 0.7739±0.0084         |
| GDSA w/o view 2 | <b>1.0000</b> ±0.0000 | <b>1.0000</b> ±0.0000 | 0.7146±0.1343         | 0.8015±0.0569         |
| GDSA(ours)      | <b>1.0000</b> ±0.0000 | <b>1.0000</b> ±0.0000 | <b>0.7163</b> ±0.0069 | <b>0.8191</b> ±0.0375 |

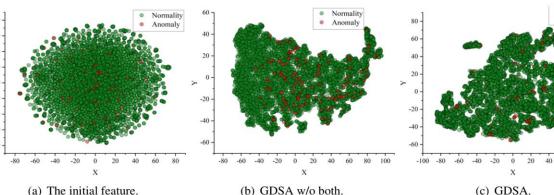
**Existing Problems** Rethinking Experiment Background Structure Disturbance Group Discrimination Conculsion

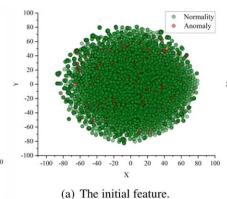
# **Experiment** Results

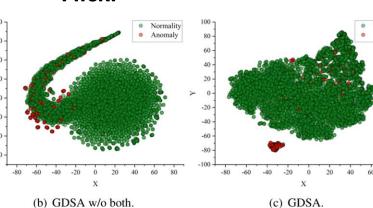
#### **Ablation study**-- Latent space distribution



BlogCatalog

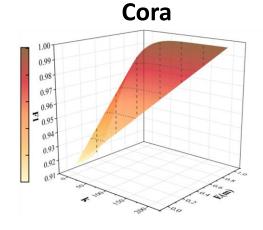


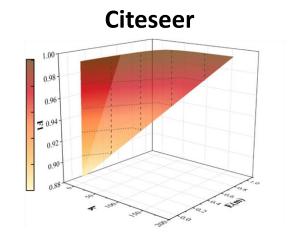




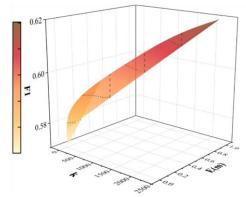


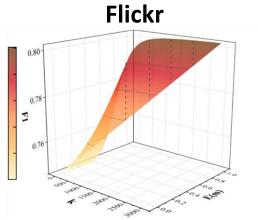
#### **D** Parameter analysis





BlogCatalog





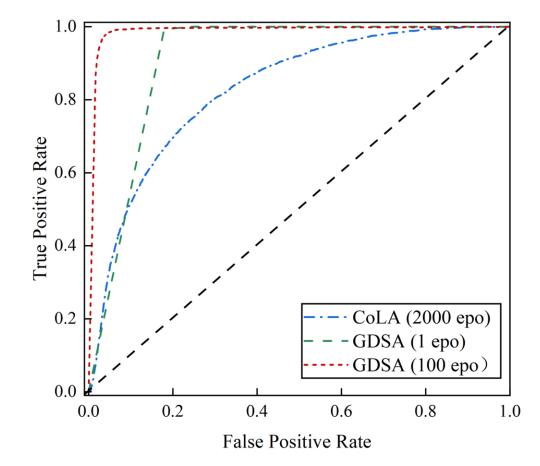


#### **Scalability**-- Detection performance and Computational efficiency (ogbn-arxiv)

| Methods        | AUC    | Memory usage                  | Training time | Testing time    |
|----------------|--------|-------------------------------|---------------|-----------------|
| CoLA(2000 epo) | 0.8291 | 8961MB                        | 78h24m25s     | 7h18m43s        |
| GDSA(1 epo)    | 0.9096 | 9.7%<br>3414MB 61.9%<br>19.0% | 3m59s 1181.0× | 5.1973s 5064.7× |
| GDSA(100 epo)  | 0.9867 | 4850MB 45.9%                  | 8h11m32s 9.6× | 5.1973s 5064.7× |



**Scalability**-- Detection performance and Computational efficiency (ogbn-arxiv)





#### **Conculsion** and Future Works

- Algorithmic ideas: An efficient self-supervised group discrimination paradigm with structure Aware for graph anomaly detection is proposed.
- Practical significance: GDSA breaks through the barrier of graph anomaly detection that it is difficult to directly model anomalous structures.
- ✓ Future Works:
  - **Rethinking the graph anomaly detection** problem from more angles.
  - Explore frameworks that can detect different types of anomalies in graph anomaly detection more comprehensively and efficiently.





#### Rethinking graph anomaly detection: A self-supervised Group Discrimination paradigm with Structure-Aware





Junyi Yan, Enguang Zuo, Chen Chen, Cheng Chen, Jie Zhong, Tianle Li, Xiaoyi Lv\*

> Xinjiang University, China Email: yjy@stu.xju.edu.cn



IEEE International Conference on Multimedia and Expo 2023 Brisbane Convention & Exhibition Centre 10-14 July 2023

\*Corresponding author