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Abstract: Effective contamination warning and control of food quality can significantly reduce
the likelihood of food quality safety incidents. Existing food contamination warning models for
food quality rely on supervised learning, do not model the complex feature associations between
detection samples, and do not consider the unevenness of detection data categories. In this paper, To
overcome these limitations, we propose a Contrastive Self-supervised learning-based Graph Neural
Network framework (CSGNN) for contamination warning of food quality. Specifically, we structure
the graph for detecting correlations between samples and then define the positive and negative
instance pairs for contrastive learning based on attribute networks. Further, we use a self-supervised
approach to capture the complex relationships between detection samples. Finally, we assessed
each sample’s contamination level based on the absolute value of the subtraction of the prediction
scores from multiple rounds of positive and negative instances obtained by the CSGNN. Moreover,
we conducted a sample study on a batch of dairy product detection data in a Chinese province.
The experimental results show that CSGNN outperforms other baseline models in contamination
assessment of food quality, with AUC and recall of unqualified samples reaching 0.9188 and 1.0000,
respectively. Meanwhile, our framework provides interpretable contamination classification for
food detection. This study provides an efficient early warning method with precise and hierarchical
contamination classification for contamination warning of food quality work.

Keywords: food quality safety; contamination warning; contrastive learning; self-supervised learning;
graph neural networks

1. Introduction

Food safety issues are of increasing concern to international organizations and people
worldwide. Efficient surveillance and early warning programs can effectively reduce
the probability of food safety accidents. Currently, many international organizations and
countries have established monitoring systems to ensure food quality safety [1–4]. Similarly,
China has gradually improved its national food safety risk assessment system [5,6]. For
example, in 2009, China enacted the Food Safety Law of the People’s Republic of China. In
2011, the China National Center for Food Safety Risk Assessment (CFSA) was established.
In 2018, the revised version of the Food Safety Law of the People’s Republic of China
included food safety assessment as a scientific basis for implementing regulations and
setting standards. Therefore, developing food safety risk assessment methods can help
systematize and standardize China’s food safety regulatory system. Contamination of food
quality is one of the significant causes of food safety risks. Contamination warning and
control of food quality are closely related to food safety risk assessment and are an essential
part of food safety regulations.
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The existing mainstream contamination warning methods mainly include hierarchical
relationship analysis-based methods [7–9], Bayesian network-based methods [10,11], and
artificial neural network (ANN)-based methods [12]. However, these approaches exhibit
the following deficiencies.

1. They rely on supervised learning [13]. Still, manual labeling of detection data labels
will significantly increase the time cost and require operators to have an explicit
knowledge of data category classification. Once a casual error in classifying data
categories occurs, it will lead to a series of subsequent tasks with persistent interference
from subjective factors, which is fatal in practical application scenarios. The supervised
learning process on raw data is shown in (a) in Figure 1.

2. They use balanced training data or do not consider the category imbalance in the
training data. Data category imbalance is a significant quantitative difference in the
sample size of different labels in the data, which is common in practical scenarios.
Category imbalance can limit the model’s performance to varying degrees [14,15], so it
is critical to investigate how to adopt strategies to address the data category imbalance
while ensuring relatively good performance [16].

3. They do not adequately capture topological information between detection samples.
The data obtained in the detection process has the characteristics of complexity, non-
linearity and discreteness, which means that we need to pay attention to the detection
data’s attribute information and topology information as much as possible to realize
the contamination warning of food quality more accurately.

(a) Supervised learning (b) Self-supervised learning

Figure 1. Supervised learning versus self-supervised learning.

Contrastive learning is a promising solution to the above limitations. Contrastive
learning uses a self-supervised approach to construct supervised information from the data,
essentially addressing the reliance on manual labeling [17], processed as in (b) in Figure 1.
Contrastive learning focuses on learning common features between instances of the same
class and distinguishing differences between different classes by modeling the relationship
between each node and some of its adjacent substructures [18]. Moreover, contrastive
learning has powerful advantages in graph representation learning [19,20], especially
for anomaly detection in attribute networks [21]. The learned embeddings in attribute
networks include attribute and structure information, effectively capturing topological and
attribute information in the network [22–24]. Figure 2 shows three anomalies that attribute
networks are committed to capturing. The contamination warning of food quality task
aims to mine all quality-contaminated unqualified samples and potentially contaminated
qualified samples, that is, to discover anomalous samples whose characteristic information
differs from most normal samples, which is similar to the principle of anomaly detection
in attribute networks [25]. Graph neural networks (GNNs) model complex correlations
among sample individuals. Therefore, attribute network-based contrastive learning has the
potential to be applied to the contamination warning of food quality tasks.
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(a) Structural Anomaly (b) Attribute Anomaly (c) Comprehensive Anomaly

Figure 2. The attribute network catches three exceptions. Subgraph (a) belongs to the structural
exception. That is, there are connection nodes that do not match all properties. Subgraph (b) belongs
to the attribute exception. That is, some attributes do not match all nodes. Subgraph (c) belongs to
the comprehensive exception. That is, there are both structural exceptions and attribute exceptions.

Based on the above observations, we propose a novel Contrastive Self-supervised
learning-based Graph Neural Network framework (CSGNN for abbreviation) for contami-
nation warning and control of food quality. Specifically, we first construct the food detection
data into an attribute graph containing attributes and structural information [26,27]. Fur-
ther, the self-supervised contrastive learning module is trained by sampling the positive
and negative instance pairs obtained from the complete attribute graph. Therefore, CSGNN
can efficiently exploit detection data’s structural information and contrastive association
information to accomplish contamination warning and control of food quality. In brief, the
main contributions of the food safety contamination early warning framework proposed in
this paper are as follows.

1. An end-to-end contamination warning and control framework for food quality is
proposed by us, which can efficiently mine quality-contaminated unqualified samples
and potentially contaminated qualified samples in food detection data by obtaining
contamination values from food detection data.

2. A contrastive self-supervised learning scheme for contamination warning and control
of food quality is proposed by us. Contrastive learning solves the dependence of
the previous method on the balance of data categories. Meanwhile, self-supervised
learning efficiently solves the problems of being easily interfered with by subjective
factors and high time costs in the manual labeling operation of data categories in
practical applications.

3. GNNs are used for information transfer. The CSGNN considers the data nodes’
attributes and structural information by constructing an attribute graph. To the best of
our knowledge, it is also the first time graph algorithms have been applied to food
safety risk assessment-related tasks.

4. The data in the actual scenarios verify that the contamination warning effect of the
proposed algorithm is better than that of the current mainstream model. On a batch of
dairy product detection data in a specific province in China, we compared the CSGNN
framework with the mainstream model. Under self-supervision, the recall of unquali-
fied samples of CSGNN reached 1.0000, which was more than 13% higher than the
sub-optimal model. In addition, CSGNN completed the contamination classification
of the food detection data based on the contamination value of each sample.

2. Related Work
2.1. Contamination Assessment Models for Food Quality

There are many types of traditional contamination assessment models for food quality.
Various assessment methods exhibit different performances. Specifically, back-propagation
(BP) may fall into an optimal local solution and lead to training failure during the train-
ing process [28]. The support vector machine (SVM) can guarantee to find the optimal
global resolution with the help of convex optimization, which has been applied in various
detection tasks [29,30]. Still, it cannot fully exploit the potential risks of food safety data.
Bayesian network models have also been applied to contamination assessment tasks for
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food quality [31,32]. Still, they usually require modeling with expert knowledge, resulting
in model performance limited by specialist experience.

With the development of deep learning, deep neural network models (DNNs) have
shown promising potential in mining data features [33,34], which provides new ideas
for contamination assessment for food quality. Nogales et al. applied multilayer percep-
tron (MLP) and one-dimensional convolutional neural network (Conv1D) to food quality
contamination prediction workflow for the RASFF data launched by European Union,
combining entity embedding to obtain better prediction accuracy than machine learning
models [35]. Geng et al. used deep radial basis function (DRBF) neural networks combined
with hierarchical analysis (AHP) to assess the contamination of food detection data [8],
which enhanced the data representation of RBF shallow networks while avoiding getting
trapped in local optima. However, these models are highly influenced by subjective metrics
and cannot adequately capture the correlation information among complex detection data.
In contrast, this paper proposes for the first time to use GNN to model the samples directly
and the association information between them [36] to mine the association information
in the detection data, ultimately, to achieve a more precise contamination assessment for
food quality.

2.2. Contrastive Learning

Contrastive learning is an essential part of self-supervised learning. It completes
the representation of data features by constructing a pair of instances and feeding them
into the contrastive learning module. Contrastive objects and contrastive losses highlight
inconsistencies between the different classes and similarity features between the same
classes, respectively, which align with the original goals of downstream tasks such as
classification and detection [37].

With the development of GNN, contrastive learning has also been applied to the
training of GNN. DGI captures the global structural information in the network by maxi-
mizing the interaction information between the local and global input [19]. GraphCL learns
node embeddings by maximizing the representational similarity between intrinsic features
and link structures for local subgraphs of the same node [38]. Through a contrastive loss,
SUBLIME maximized the mutual information between anchor maps and learned structure
maps [39]. Although contrastive self-supervised learning has improved the performance of
GNNs in speech recognition and visual representation learning [40,41], to the best of our
knowledge, the current study is the first to propose its use as a contamination assessment
model for food quality. Due to the particularity of the contamination assessment task, we
designed the contrastive learning module to focus on the local information of the data
rather than the global information, which will help the model to mine the data features of
contaminated samples more efficiently.

3. Materials and Methods

In this paper, we use bold lowercase letters (e.g., X), bold uppercase letters (e.g., X),
and fancy letters (e.g., G) to denote vectors, matrices, and sets, respectively. The main
symbols used in this paper are summarized in Table 1.

3.1. Problem Definition and Data Source
3.1.1. Problem Definition

Given a set of food detection data with N samples and V testing indicators xv1,...,xvn,
first construct an attribute graph G = (V , E , X) for the detection data, where V is the set
of nodes of G (|V| = N = n), E is the set of edges of G, and X ∈ Rn×d is the attribute
matrix of G (d = V). The objective is to compute the contamination value f (si) for each
sampled sample si (a higher contamination value means higher hazardous contamination
of the sample presence). By ranking the contamination values of all samples, the model
is based on the lowest contamination value W of the unqualified samples and the more
obvious boundary value U between the contamination values of the contaminated samples
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and the negligible contaminated samples to achieve the contamination ranking of the
detection data.

Table 1. Notes and explanations related to the CSGNN framework. The table’s three blocks (from
top to bottom) show the data preprocessing and structured representation, GCN-based contrastive
learning, and CSGNN’s hyperparameters, respectively.

Notation Description and Explanation

xmin
v The minimum value of the original value of the v-th indicator for all samples.

xmax
v The maximum value of the original value of the v-th indicator for all samples.

xmean
v The average value of the original value of the v-th indicator for all samples.
xvn The original value of the v-th indicator of the n-th sample.

N The number of samples in the detection data.
V The number of testing indicators in the detection data.
n The number of nodes in G.
d The dimension of the attribute in G.

G = (V , E , X) Attribute networks constructed from the detection data.
V The set of nodes of G.
E The set of edges of G.

X ∈ Rn×d The attribute matrix of G.
Ii = (si,Gi, yi) Instance pairs for each batch with a total batch size of M.

si Sampled samples in instance pair Ii.
Gi The group of adjacent samples in instance pair Ii.

yi ∈ {0, 1} True label of the sampled sample si.
H(`)

i ∈ Ra×b(`) The representation matrix is learned by the `-th implicit layer.
W(`) ∈ Rd(`)×d(`+1)

The `-th layer trainable weight matrix.
Ei ∈ Ra×b The embedding matrix of the nodes in Gi.
z(`)i ∈ Rb(`) The row vector of feature representations of the sampled sample si learned by the `-th implicit layer.

ess
i ∈ Rb The embedding vector of si.

eas
i ∈ Rb The embedding vector of Gi.

W(b) ∈ Rb×b The weight matrix of the comparison recognition module.
pi The prediction score of Ii.

f (si) ∈ [0, 1] The contamination value of the sampled sample si.

R The number of sampling rounds.
a The number of nodes in adjacent sample groups.
b The dimensionality of embedding.

W The lowest contamination value of the unqualified samples.

U The more obvious boundary value between the contaminated sample and the negligible contamination
sample (default 0.5).

Z Set the number of edges when structuring.

3.1.2. Data Source

In this paper, 2158 detection data of sterilized dairy products(qualified samples: un-
qualified samples = 2117:41) from 2013 to 2021 provided by the Institute of Product Quality
Supervision and Inspection in a Chinese province, were used to test the contamination
assessment capability for food quality of the models. According to the National Food
Safety Standard of China [42], the testing indicators of sterilized dairy products include
five categories: sensory indicators, physical and chemical indicators, contaminant index,
mycotoxin index and microbial index. The selection of contamination assessment for food
quality testing indicators should be considered comprehensively in terms of operability
and validity. According to the obtained detection data, we aim to scientifically select the
testing indicators corresponding to the factors that may cause food quality contamination.
Since the microbial index in the detection data has met the requirements [8], we selected the
physicochemical index and mycotoxin index from the testing indicators of sterilized milk
specified in the national standards as the evaluation criteria for food quality contamination,
where the physicochemical index includes lactose, nonfat milk solids, protein, acidity and
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fat for a total of five indicators, In addition, the mycotoxin index refers to aflatoxin M1.
Table 2 shows the six testing indicators’ specific requirements and testing methods. And
Table 3 presents detection data for partially sterilized dairy products.

Table 2. The specific requirements of the six testing indicators and testing methods 1.

Item Requirements Testing Method

physicochemical
index

Lactose/(g/100 g) 62.0 GB 5009.8-2016
Protein/(g/100 g) >3.1 GB 5009.5-2010

Acidity/(°T) 11∼16 GB 5413.34-2010
Fat/(g/100 g) >3.7 GB 5413.3-2010

Nonfat Milk Solids/(g/100 g) >8.5 GB 5413.39-2010

mycotoxin index Aflatoxin M1/(µg/kg) 60.5 GB 2761-2017
1 http://down.foodmate.net/standard/index.html (accessed date: 10 August 2022)

Table 3. Detection data for partially sterilized dairy products from 2013 to 2021.

Sample Number Testing Date Item
Lactose Nonfat Milk Solids Protein Acidity Aflatoxin M1 Fat

20211010-578 10 October 2021 1.73 8.97 3.40 12.00 0.2 4.28
20200410-525 10 April 2020 1.74 8.67 3.39 12.08 0.5 4.69
20190504-166 4 May 2019 1.72 8.81 3.37 12.07 0.5 4.44
20180610-453 10 June 2018 1.70 8.68 3.25 12.19 0.5 4.36
20210909-512 9 September 2021 1.73 8.62 3.42 12.40 0.2 4.20

3.2. Contamination Warning of Food Quality Based on Contrastive Self-Supervised Learning

In this section, we describe the overall framework of CSGNN, as shown in Figure 3.
The CSGNN framework consists of four parts: data preprocessing and structuring, con-
trastive instance pair sampling, GCN-based contrastive learning, and contamination as-
sessment. First, the raw data are preprocessed and structured better to implement feature
mining for detection data with complex correlations. Next, the local subgraph sampling
strategy of RWR is used to obtain positive and negative instance pairs. After that, we use
the GCN-based contrastive learning model to train each batch of instance pairs. Finally, all
the detection samples will be randomly traversed as sampling samples. The contamination
assessment of the detection samples is completed by evaluating the consistency between
the sampling samples and the adjacent sample groups.

Figure 3. The overall framework of CSGNN. First, the framework preprocesses and structures the raw
detection data to better mine the complex relationships in the detection data. Then, the local subgraph
sampling strategy is used to obtain positive and negative instance pairs, which are trained by the
GCN-based contrastive learning model and get the contamination value of each sample. Finally, the
contamination assessment for food quality is carried out by the contamination value of the sample.

http://down.foodmate.net/standard/index.html
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The food quality hazard contamination considered in this paper refers to the contami-
nation of food quality due to testing indicators that do not meet the standard requirements.
CSGNN is based on contrastive learning to measure the consistency between the perfor-
mance of the sampled samples and their adjacent sample groups in each testing indicator.
When the samples show a higher degree of inconsistency with the adjacent sample groups,
their contamination values are higher, and the possibility of quality hazard contamination
is more significant.

3.2.1. Data Preprocessing and Structuring

We visualized part of the raw detection data for sterilized dairy products in Table 3,
as shown in Figure 4. It can be seen from the figure that there are significant dimensional
differences between the different testing indicators.

As is demonstrated in the first part of Figure 3, we used the minimum-maximum nor-
malization method to transform the raw data into unitless data to eliminate the dimensional
differences among different testing indicators. According to the different requirements
of the food safety standards for the six testing indicators, we classified them into three
categories: positive indicators, inverse indicators, and oscillatory indicators, as shown in
Table 4. The positive indicator is one whose hazardous contamination increases as the
indicator’s value increases. Conversely, the inverse indicator is one whose hazardous
contamination decreases as the indicator’s value increases. In addition, the closer the
oscillator is to the specified interval, the less contamination there is, and the further it is
from that interval, the more contamination there is. Equations (1)–(3) normalize the three
categories of indicators, respectively. Ultimately, the greater the normalized data value, the
greater its hazardous contamination.

xp
vn =

xvn − xmin
v

xmax
v − xmin

v
(1)

xr
vn = 1− xvn − xmin

v
xmax

v − xmin
v

=
xmax

v − xvn

xmax
v − xmin

v
(2)

xo
vn =

|xvn − xmean
v |

xmax
v − xmin

v
(3)

where, xmax
v = max{xv1, xv2, . . . , xvn}, xmin

v = min{xv1, xv2, . . . , xvn}, xmean
v = ∑n

i=1 xvi
n . xvi

denotes the value of the v-th indicator corresponding to the i-th sample, and n denotes the
number of samples.

Table 4. Sterilized dairy products testing indicators categories classification.

Categories Item Requirements

Positive indicators Aflatoxin M1/(µg/kg) 60.5
Lactose/(g/100 g) 62.0

Inverse indicators
Protein/(g/100 g) >3.1

Fat/(g/100 g) >3.7
Nonfat Milk Solids/(g/100 g) >8.5

Oscillatory indicators Acidity/(°T) 11∼16

We construct a representation based on the correlations between detection samples.
Expressly, we represent the food detection samples as nodes in the graph. The testing
indicators of the samples are represented as node attributes in the graph. Accordingly, the
construction of the attribute graph is completed. The distances between each sample are
calculated separately and arranged in descending order when constructing the sterilized
milk detection data graph. Our experiments show that the model performs best compre-
hensively when the top Z = 50 samples with the closest distance are set as edged, and the
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rest are set as unedged. CSGNN is based on self-supervised learning to detect and analyze
all samples in a dataset. It uses preprocessing and structuring operations to process the
original complex and discrete detection data into the structured representation suitable for
GNN. To demonstrate the impact of preprocessing and structuring operations on the initial
detection data, we visualized 100 samples (randomly selected) as an example. Figure 5
shows the reduced dimensional distribution of the sterilized milk data before preprocessing
and the network structure after preprocessing and structuring, respectively. Our processing
is well suited to transform the original detection data between different magnitudes into
structured data suitable for GNN without losing as much valid feature information and
topological relationships as possible.

Figure 4. Visualization of raw partial detection data values for some sterilized dairy products.

(a) (b)

Figure 5. Effect of preprocessing and structuring operations on the original detection data (t-SNE
visualization with 100 randomly selected samples). Subfigure (a) shows the dimensionality reduction
distribution of the sterilized milk detection data before preprocessing. Subfigure (b) shows the result
of preprocessing and structuring the original data with node diameters proportional to PageRank
scores, coloring the node according to sample classes and the edge colors determined by the source
node colors. (a) Before data preprocessing. (b) After data preprocessing and structuring.

3.2.2. Contrastive Instance Pair Sampling

The definition of contrastive instance pairs is the core work of the contrastive learning
module. Previous works have demonstrated different advantages in defining instance pairs
of graphs [20,43]. Due to the complex topological relationships between different samples
of food detection data, we expect the contamination assessment framework for food quality
to capture both attribute and structural information of the samples in an integrated manner.
This part corresponds to the second part of the content of Figure 3. Inspired by the novel
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contrastive instance pairs designed for anomaly detection tasks in the paper [21], we focus
on modeling the relationships between target nodes and their neighboring subgraphs to
help mine the local information of the nodes. Specifically, we use a “sampled samples v.s.
adjacent sample groups” instance pair for the attribute network in the CSGNN framework.
The first element of the instance pair is a random sample obtained by traversal in the
detection data. The second element of the instance pair refers to the group of adjacent
samples sampled from the initial samples. The initial sample is set to the sampled sample
for positive instance pairs. That means the sampled adjacent sample group matches the
nearby samples of the sampled sample. For negative instance pairs, the initial sample is
drawn randomly from all samples that do not include the sampled sample; that is, the
initial sample will not come from the sampled sample. Therefore, there is a certain degree
of mismatch between their sampled samples and adjacent sample groups for contaminated
samples. A higher degree of mismatch represents higher hazardous contamination of the
detection sample corresponding to that node.

Figure 6 shows the sampling process of instance pairs in the CSGNN framework.
Sampling consists of selecting the sampled samples, sampling adjacent sample groups,
hiding sampled samples, and synthesizing instance pairs.

Figure 6. Contrastive learning completes the instance pair sampling process. Node 4 is the sampled
sample, and node 9 is the unqualified sample.

1. Selecting the sampled samples. All samples in the detection data are traversed ran-
domly within each epoch, and the sampling samples are determined randomly.

2. Sampling adjacent sample groups. We set their initial samples as sampling samples
and random sampling samples for the adjacent sample groups of positive and negative
instance pairs, respectively. Inspired by the paper [43], we use RWR [44] as the
sampling strategy for local sample groups to make the sampling strategy for adjacent
sample groups more efficient.

3. Hiding sampled samples. To avoid the contrastive learning module to quickly identify
the presence of sampled samples in the adjacent sample groups, we zeroed out the
attribute features of the initial samples. That is, the attribute information of the
sampled samples is hidden.

4. Synthesizing instance pairs. Combine sampled and adjacent samples into instance pairs
and save them to the positive and negative instance pairs sample pool, respectively.

3.2.3. GCN-Based Contrastive Learning

GNNs use information propagation between nodes to capture complex dependencies
between data, which has vastly improved the performance of downstream tasks [45,46]
such as traffic flow prediction [47], recommender Systems [48], text classification [49],
and action recognition [50]. GCNs [51] are multilayer graph convolutional networks that
perform first-order local approximations to spectral graph convolutions neural networks,
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which solves the problem of its inability to maintain translation invariance on discrete non-
Euclidean data while preserving the CNN’s ability to process spatial features efficiently. As
the third part of Figure 3 demonstrates, in the CSGNN framework, we select the GCN as the
backbone of the GNN module, which is an essential component of the CSGNN framework.
The sampled instance pairs are used to train the GCN-based contrastive learning model.
We perform operations on each batch of instance pairs Ii = (si,Gi, yi), where si denote
the sampled samples in the instance pair, Gi denotes the group of adjacent samples in the
instance pair, and yi denotes the labels of the sampled samples. The GCN-based contrastive
learning model mainly consists of a GCN module, a dimensionality reduction module, and
an embedding comparison recognition module.

GCN module. This module efficiently mines the feature information of the sampled
sample si and the adjacent sample group Gi, mapping the embeddings of these two parts to
the same embedding space, which will prepare the features for comparison between these
two parts later. The layer-by-layer propagation principle of GCN for the adjacent sample
group is shown in Equation (4).

H(`+1)
i = φ

(
D̃−

1
2

i ÃiD̃
− 1

2
i H(`)

i W(`)

)
(4)

Here, H(`)
i refers to the representation matrix learned by the `-th implicit layer, the

input H(0)
i = Xi, where Xi is the matrix of attribute vectors, and the output is labeled as

the embedding Ei of the adjacent sample group Gi. D̃i refers to the degree matrix of the
adjacent sample group Gi. Ãi = Ai + I refers to the adjacency matrix with self-connected
subgraph, where I refers to the identity matrix. W(`) ∈ Rd(`)×d(`+1)

refers to the `-th layer
trainable weight matrix. φ(·) denotes the activation function such as ReLU.

Compared with the adjacent sample group Gi, the sampled sample si has no structural
information, so we only need to use the weight matrix of GCN and the corresponding
activation function to complete its attribute information feature conversion, as shown in
Equation (5).

z(`+1)
i = σ

(
z(`)i W(`)

)
(5)

where z(`)i is the row vector of feature representations of the sampled sample si learned by

the `-th implicit layer. W(`) is the weight matrix shared with the GCN. The input z(0)i is
defined as the row vector of attributes of the sampled sample si, and the output is labeled
as the embedding ess

i of the sampled sample si.
Embedding comparison recognition module. This module maps the high-dimensional

sample embedding Ei in the adjacent sample group Gi to the low-dimensional embedding
space, facilitating comparison with the low-dimensional embedding feature ess

i of the sampled
samples. The principle is shown in Equation (6).

eas
i = Dimreduction(Ei) =

ni

∑
m=1

(Ei)m
ni

(6)

where (Ei)m refers to the m-th rows of the adjacent sample group embedded in Ei, and ni
refers to the sample size in the adjacent sample group Gi.

Dimensionality reduction module. This module completes the embedding comparison
of sampled samples and adjacent sample groups and is a vital part of the GNN-based
contrastive learning model. Inspired by the literature [40], we apply a simple bilinear
scoring function to this module. Equation (7) shows the details.

Comparator(eas
i , ess

i ) = σ
(

eas
i W(b)essT

i

)
(7)
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where W(b) refers to the weight matrix of the comparison recognition module and φ(·)
denotes the sigmoid function.

Loss function. We use the standard binary cross-entropy (BCE) loss, applied to con-
trastive self-supervised learning tasks [20]. Unlike the BCE applied to category balancing as
elaborated in the original paper, to effectively deal with the problem of category imbalance
in food testing tasks, we perform balanced sampling between positive and negative instance
pairs. Therefore, we use a common BCE. We follow Equation (8) to calculate separately the
total The prediction score pi for each instance pair Ii = (si,Gi, yi) for each batch with batch
number M. The loss function operation performed on Ii is shown in Equation (9).

pi = CLM(si,Gi) (8)

L = −
M

∑
i=1

yi log(pi) + (1− yi) log(1− pi) (9)

Here CLM(·) denotes the contrastive learning model.

3.2.4. Contamination Assessment

This part corresponds to the fourth part of Figure 3. After the GNN-based contrastive
learning is completed, We assess the corresponding sample’s hazardous contamination by
identifying the consistency between the sampled sample si and the adjacent sample group
Gi. Ideally, the lower a sample’s hazardous contamination, the closer the prediction score of
its positive and negative instance pairs is to the median value (0.5). Conversely, the higher
the hazardous contamination of a sample, the closer the prediction scores of its positive and
negative instance pairs are to either side of 0 or 1. We define the contamination value of a
sample as the absolute value of the difference between positive and negative instance pairs.
Considering the incompleteness and chance of adjacent sample group Gi selection, we use
multiple rounds of sampling to sample the testing samples. Specifically, we sample each
sample in the detection data and sample the positive and negative instance pairs using
the sampling strategy introduced in Section 3.2.2. The sampled instance pairs Ii are fed
into the contrastive learning model, and their prediction scores pi are calculated separately
according to Equation (8).

Finally, the sample f (si) value-at-contamination is calculated by averaging the abso-
lute values of the prediction scores between positive and negative pairs of instances by
subtraction over multiple rounds of sampling, as shown in Equation (10).

f (si) =

∣∣∣∑R
r=1

(
p(−)i,r − p(+)

i,r

)∣∣∣
R

(10)

where R is the number of sampling rounds. f (·) is the mapping function of the detected
data contamination values, which is the final objective function of the CSGNN framework.

3.3. Evaluation Metrics

The objective of the CSGNN framework in the contamination assessment process is to
detect unqualified samples and complete the contamination hierarchy for qualified samples.
We selected the following five evaluation metrics based on this objective.

The area under the ROC curve AUC will combine the ability of the model to detect
qualified and unqualified samples and reasonably assess the comprehensive performance
of the CSGNN framework in a dataset with category imbalance. Recall of unqualified
samples, which reflects the probability that an unqualified sample is mistakenly detected
as a qualified sample, is used to evaluate the model’s ability to detect all unqualified
samples. Precision reflects the probability that all detected unqualified samples are actually
unqualified samples. We will use precision (all samples) and precision of qualified samples
to measure the model’s ability to identify unqualified samples and qualified samples,
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respectively. The false acceptance rate (FAR), which reflects the probability that the qualified
sample is detected as an unqualified sample, is used to measure the model’s contamination
warning ability for qualified samples.

The meanings of the four base indicators TP, FP, FN, and TN in the confusion matrix
are shown in Table 5. We mark the unqualified samples in the dataset as 1 and the qualified
samples as 0. The evaluation metrics AUC, precision, the precision of qualified samples,
recall of unqualified samples, and FAR are calculated in Equations (11)–(15), respectively.

AUC =
∑ I( test qualified > test unqualfied )

(TP + FN) ∗ (FP + TN)
(11)

Precision =
TP

TP + FP
=

The number of unqualified samples correctly tested
The number of samples tested as unqualified

(12)

Precisionqualified =
TN

TN + FN
=

The number of qualified samples correctly tested
The number of samples tested as qualified

(13)

Recallunqualified =
TP

TP + FN
=

The number of unqualified samples correctly tested
The number of unqualified samples

(14)

FAR =
FP

FP + TN
=

The number of falsely tested as unqualified
Total number qualified samples

(15)

Table 5. Meaning of base indicators in confusion matrix.

Real Label
1 0

Predicted Label 1 True Positive (TP) False Positive (FP)
0 False Negative (FN) True Negative (TN)

3.4. Baseline Model

We selected three supervised models and two unsupervised models as the baseline
model. The supervised baseline model is chosen as NNLM, CNN, and GCN, and the
unsupervised baseline model is chosen as LOF and GAN. It is worth noting that the
baseline model uses the same data preprocessing as CSGNN and the three supervised
models use the same dataset partitioning to ensure the fairness of the comparison.

3.4.1. NNLM

NNLM is a classic shallow neural network model in natural language processing,
which proposes the introduction of word vectors in the model for the first time, and suc-
cessfully breaks through the limitations of the N-gram model in modeling the relationship
between words and words. NNLM is an excellent way to learn complex relationships
between words and has played a role in the detection task [52], so it is used as the first
baseline model in this paper. We set the number of hidden layer neurons to 16, the learning
rate to 0.00001, the batch size to 16, and the epoch to 30.

3.4.2. CNN

CNN’s expertise in capturing local feature information in data is widely used in image
recognition and speech recognition. It has recently been applied to biometrics and food
safety tasks with significant results [53]. We will use CNN as the second baseline model
of this paper, setting two different convolutional kernels with four each, the activation
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function as ReLU, the optimizer as Adam, the learning rate as 0.001, the batch size as 32,
and the epoch as 20.

3.4.3. GCN

GCN can simultaneously mine the attribute and structural information in the topology
diagram for end-to-end learning, the mainstream GNN model. GCN has more robust
feature extraction capabilities than CNNs, solving the problem that CNNs cannot maintain
panning invariant in non-Euclidean data, and can effectively mine complex correlation
information in data, showing promising potential in classification tasks [54]. Therefore, we
will use GCN as the third baseline model in this paper to explore the effect of the GNN
algorithm in the food detection task, setting up two convolutional layers, the activation
function as ReLU, the optimizer as Adam, with the learning rate of 0.01 and the epoch
of 200.

3.4.4. LOF

LOF is a density-based unsupervised anomaly detection algorithm that determines
whether a data point is abnormal by comparing the local neighbor density of each data
point with its neighborhood data point [55]. Inspired by anomaly detection in attribute
networks, we found that anomaly detection has a similar principle to food detection tasks,
with the goal of anomalous mining data with feature information that differs from most of
the data. Therefore, we will use LOF as the fourth baseline model for this paper to explore
the effect of this class of anomaly detection algorithms in food detection tasks.

3.4.5. GAN

GAN comprises the generator (G) and discriminator (D), a generative model based on
unsupervised learning methods widely used in image generation and style migration. It
also exhibited good performance in the detection and classification tasks [56], so this paper
used GAN as the fifth baseline model. We chose Adam as the optimizer for G and D, ReLU
as the activation function, the learning rate is 0.0001, the batch size is 32, and the epoch
is 500.

3.5. Parameter Settings

In the structured representation phase of the data, we construct network G in the
same way as the GCN model in the baseline model. During the contrastive instance pair
sampling phase, we set the size of the instance pair to Gi of the adjacent sample group in
the Ii to 5. The available nodes will be reused to reach the set size for nodes smaller than
the adjacent sample group Gi fixed size. In the GCN-based contrastive learning phase, set
the number of module layers to 1 and the embedded dimension fixed to 6. We chose Adam
as the optimizer. In addition, Set the learning rate to 0.006, the batch size to 450, and the
epoch to 1000. We set the sampling round R to 256.

4. Experiments and Analysis of Results

In this section, we conducted a complete experiment and gave a detailed experimental
comparison and analysis. We explain the entire experimental validity by the following
three main questions.

Q1: What are the advantages of the CSGNN framework over the baseline model?
What performance will these advantages demonstrate in real-world application scenarios?

Q2: What kind of contamination warning does the CSGNN framework enable in
contamination assessment applications for food quality? How does it do it?

Q3: Is there a reasonable and feasible explanation for the contamination classification
of the CSGNN framework in contamination assessment for food quality?

We will answer each of these questions in the following content and elaborate on the
details of our experiment.
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4.1. Analysis of Results
4.1.1. For Q1 (What Are the Advantages of the CSGNN Framework over the Baseline
Model? What Performance Will These Advantages Demonstrate in Real-World
Application Scenarios?)

We completed a comparison experiment between five baselines and CSGNN models on
the sterilized dairy product detection data, as shown in Table 6. Overall, the CSGNN model
performed better than all baseline models. Specifically, we have the following findings.

Table 6. All models were evaluated 30 times on the sterilized milk detection dataset and averaged the
results. (In input, X indicates the input data information, and Y represents the Label corresponding to
the data. The best performance values of each evaluation metric in the supervised and unsupervised
models are shown in bold and bold combined with underlining, respectively. * indicates the best
performing model applicable to the food contamination early warning task in each evaluation metric).

Input Models AUC Precision Precision of
Qualified Samples

Recall of
Unqualified Samples FAR

(X,Y)
NNLM 0.7602 0.9668 0.9904 0.7059 0.2941 *
CNN 0.6765 0.9833 0.9829 0.3529 0.6470
GCN 0.9988 0.9979 1.0000 1.0000 0.0024

(X)
LOF 0.9150 0.9787 0.9787 0.8823 0.0523
GAN 0.5804 0.9546 0.9782 0.2353 0.7647

CSGNN 0.9140 0.9829 1.0000 1.0000 0.1719 *

Firstly, in all models, the AUC values of GCN, LOF, and CSGNN were higher than
0.91. The AUC value of GCN is the highest value of 0.9988 of all models, indicating that
the GNN algorithm exhibits very stable performance in food detection tasks. For the AUC
values in unsupervised models, the LOF model performed best at 0.9150, possibly because
the goal of the anomaly detection task was to find a small number of anomalies in most of
the data, and its purpose was to target categorical imbalances. The CSGNN is second only
to the LOF model 0.001, indicating that the GCN-based contrastive learning module in the
CSGNN framework can show stable performance when dealing with categorical imbalance
data, which is critical in practical application scenarios.

Secondly, all models have precision values above 0.95. However, the precision val-
ues for GCN and CSGNN are the highest in supervised and unsupervised models. For
supervised models, the precision value of GCN 0.9979 is 0.0146 higher than that of the
sub-optimal model CNN. For the unsupervised model, the precision value of CSGNN is
0.9829 higher than that of the sub-optimal model LOF. In addition, both GCN and CSGNN
had a precision of qualified sample value of 1.0000, which was 0.0096 more heightened than
the sub-optimal model NNLM in all models. This shows that the GNN algorithm can better
identify qualified and unqualified samples by mining complex correlation information in
the detection data, showing promising potential in food detection tasks.

Thirdly, the recall of the unqualified sample value of both GCN and CSGNN is 1.0000,
which is more than 13% higher than the sub-optimal model LOF in all models. The recall
of unqualified samples reflects the model’s ability to check the unqualified samples in the
detection data, which is the essential task for contamination assessment of food quality.
For other baseline models, the reason they cannot successfully detect all the unqualified
samples may be a bottleneck in mining complex feature information between samples
of detection data. The two GNN models can accurately detect all unqualified samples,
indicating that the GNN algorithm has successfully captured the detection data’s attribute
information and topology information in the food detection task and has good application
potential. Further, the CSGNN framework provides a solution for GNN algorithms in
unsupervised applications.

Fourthly, the contamination warning task for food quality aims to mine unqualified
and potentially contaminated qualified samples in the detection data. To smoothly identify
potentially contaminated qualified samples, the FAR value in the food detection task is
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not as low as possible because the FAR value that is too low will not be conducive to our
contamination classification of qualified samples. For the FAR value of the supervised
model, NNLM is more suitable for the contamination classification task of detection data.
The performance of GCN and CNN is too low and high, respectively, which is not conducive
to good contamination classification. For the FAR values of the unsupervised model, LOF
and GAN are too low and too high, respectively, and are unsuitable for contamination
classification. CSGNN can better achieve the contamination classification of detection data
because the CSGNN framework effectively solves the problem that GNN is too low in this
metric by setting hyperparameters. The specific scheme is detailed in Section 4.1.2.

4.1.2. For Q2 (What Kind of Contamination Warning Does the CSGNN Framework Enable
in Contamination Assessment Applications for Food Quality? How Does It Do It?)

Specifically, the CSGNN framework is divided into three stages: preprocessing and
composition, training learning, and contamination assessment. In the preprocessing and
composition stage, the unitless processing of the detection data is realized, and the struc-
tured representation is completed. During the training learning stage, the contrastive
learning model completes the training of the instance pair in a self-supervised manner. In
the contamination assessment stage, the contamination value of each sample is obtained,
and both the detection data’s binomial classification and contamination level classification
is completed accordingly.

We define the contamination value of each sample as the absolute value of its pre-
diction score subtracted between positive and negative instance pairs. In the experiment,
we labeled the lowest value of the contamination value of the unqualified samples in the
dataset as W. W, to some extent, reflects the boundary value of the contamination value
of the samples with higher contamination probability in the dataset, which is the reason
why we set it as the threshold value in the process of dichotomous determination between
qualified and unqualified samples by the model for the detection data. Ideally, the greater
the hazardous contamination of the contaminated samples after pretreatment, the more
the prediction scores of positive and negative instance pairs are distributed to both sides
of 0 and 1. The prediction scores of positive and negative instance pairs are close to the
qualified samples’ median value (0.5). Accordingly, the contamination value of U = 0.5 can
be used as a conservative boundary value to distinguish the contaminated samples from
the negligible contamination samples by default. We classify the testing samples into four
contamination classes based on the contamination value: negligible, low, medium, and
high. Each contamination level is classified based on the following.

• Negligible contamination: negligible contamination level, samples are basically risk-
free. 0 6 contamination value <U for qualified samples.

• Low contamination: Low contamination level, samples with a low probability of being
at risk. U 6 contamination value <W for qualified samples.

• Medium contamination: Medium contamination level, samples with a high probability
of being at risk. W 6 contamination value 6 1 for qualified samples.

• High contamination: High contamination level, all unqualified samples belong to this
category.

To observe the contamination warning effect of the CSGNN framework more intu-
itively, we made a visual display, as shown in Figure 7. Based on the distribution of
contamination values of the samples, they are sequentially classified as negligible contami-
nation samples, low contamination samples, medium contamination samples, and high
contamination samples.
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Figure 7. Contamination ranking of the CSGNN framework on sterilized dairy products detection
dataset.

4.1.3. For Q3 (Is There a Reasonable and Feasible Explanation for the Contamination
Classification of the CSGNN Framework in Contamination Assessment for Food Quality?)

From Figure 7, it can be found that the same contamination level samples exist in
clusters in the graph with a minimal distance between samples. This is because the
difference between the contamination values of samples with the same contamination level
is minimal. At the same time, there is a significant difference between the contamination
values of samples with different contamination levels. No sample does not comply with
the principle, which indicates that our principle of dividing samples with varying levels
of contamination is feasible. Specifically, for the 2158 sterilized milk detection data, 1734
of the 2117 qualified samples had contamination values below 0.17 and were classified
as negligible contamination by the CSGNN framework. 41 unqualified samples had a
minimum contamination value of W = 0.674 and were all classified as high contamination.
19 qualified samples had contamination values above 0.17, ranked in the low contamination
sample class. The 364 qualified samples with contamination values between W and 1
were classified as medium contamination samples. As shown in Figure 8, The CSGNN
framework successfully detects all unqualified samples from the original sterilized milk
detection data while classifying the qualified samples specifically classified into three levels
according to the contamination value: medium contamination, low contamination and
negligible contamination. To further observe the detection performance of the CSGNN, As
shown in Figure 9, we checked the contamination values of the three nearest unqualified
samples A, B, and C, which was 0.6744, 0.6782, and 0.6789, respectively, for W. We further
examined the specific values of the six evaluation metrics for these three samples, where
sample A unqualified due to its fat content of 3.57, which was below the standard range
minimum value of 3.7, and sample B was unqualified because its nonfat milk solids content
was 4.69, which was lower than the minimum value of 8.5 in the standard range. Sample
C was unqualified because its acidity content was 10.90, which did not meet the standard
range of 11∼16.

In addition, for the contamination values of negligible contamination and contami-
nated samples in the dataset, the CSGNN shows a significant difference (A cliff-like gap
between the contamination values of negligible contamination and contaminated samples),
and the boundary value distinguishing the two is much lower than the default U value,
even only 0.17. our framework highlights the information difference between the negligible
contamination and contaminated samples in the preprocessing process. The chance judg-
ment caused by local perception is smoothly avoided in the contrastive learning process
of multiple rounds of sampled instance pairs. The prediction scores of the instance pairs
corresponding to the negligible contamination samples are realized to be infinitely close to
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the median value (0.5) in calculating the contamination value. In contrast, the prediction
scores of the instance pairs corresponding to the contaminated samples are distributed to
both sides of 0 and 1. In summary, the CSGNN framework has a significant hierarchy of
contamination values for sterilized dairy product detection samples and efficiently achieves
a reasonable classification of food safety contamination levels.

Figure 8. Division of sample numbers for each contamination level of the CSGNN framework on the
sterilized dairy products detection dataset.

Figure 9. The specifics of three unqualified sample objects whose contamination values from the
CSGNN framework are closest to the W values.



Foods 2023, 12, 1048 18 of 22

The CSGNN framework performs data preprocessing and optimal composition for
unknown food detection data. The data are fed into a feedforward neural network to
obtain the contamination value of each testing sample. This process focuses on the lowest
contamination value W of the unqualified samples and the more obvious boundary value
U between the contaminated and negligible contamination samples. (Considering each
detection data’s variable quality, we will default U = 0.5 if no obvious U value is observed).
The framework will achieve the contamination classification of different food detection
data based on the W and U values obtained from different data according to the principles
described in Section 4.1.2.

4.2. Application and Optimization of the CSGNN

Inspired by [57] and considering the rigor of government work, we introduce a panel
of experts from food quality supervision departments to participate in the example analysis
and application. The CSGNN framework can provide technical support and the theoretical
basis for implementing food safety supervision and effectively improve the efficiency
of food quality contamination warnings by the expert team in the detection of massive,
diverse types and complex relationships of food data in practical application scenarios.
The expert team analyzes and implements more refined regulatory decisions based on
CSGNN’s quality contamination warning results, ensuring the reasonableness and stability
of the safety and quality assessment results.

Our intelligent food safety supervision platform, built in cooperation with the Insti-
tute of Product Quality Supervision and Inspection in a Chinese province, promotes the
application of CSGNN on the ground. We encapsulated the CSGNN framework to provide
technical support for this platform’s hazard contamination warning module. For a batch of
detection data of any food type, CSGNN takes the detection data of N samples V detection
indicators xv1,...,xvn as input (as shown in the “Item” column in Table 3), and the output is
the contamination level of N samples. Our framework shows good detection performance
during online testing of the input data, and feeds the results to the terminal according to
the contamination level. The regulatory staff analyzes the results and takes appropriate
warning measures to reduce the adverse effects of hazardous contaminated products.

5. Discussion

CSGNN provides an efficient end-to-end approach for contamination warning and
control of food quality based on self-supervised learning, which can generate significant
social and economic benefits while consuming lower costs. Specifically, the CSGNN
model can quickly perform food quality detection on an ordinary computer, requiring
minimal financial and time costs and no human intervention. At the same time, the
model can effectively optimize the food safety and quality control system in an early
warning way, and reduce the economic loss (financial penalty) and sales loss due to the
damage to the company’s reputation caused by unqualified products. For example, a
food safety incident occurred in 2022 in which propylene glycol was detected in pure milk
produced by Maiquer Group (https://www.samr.gov.cn/xw/zj/202207/t20220703_348326
.html accessed date: 15 February 2023), which not only caused the company to be fined tens
of millions of dollars (https://static.cninfo.com.cn/finalpage/2022-08-23/1214356756.PDF
accessed date: 15 February 2023). More importantly, it seriously affected the brand’s trust
in consumers’ minds and caused irreparable cascading negative impacts on the company’s
business performance.

Combined with the analysis of the results of the contamination classification provided
by CSGNN, food safety regulators will establish an emergency mechanism to deal with
special hazards. Specifically, recall of unqualified samples from food detection data and
further traceability of testing indicators that lead to samples with hazard contamination.
Thus, a priority system for hazard analysis and effective measures for safety regulation
will be established, and unified decisions on profit and loss of economic and food safety
will be taken from a global perspective. Hazard contamination of food is closely related

https://www.samr.gov.cn/xw/zj/202207/t20220703_348326.html
https://www.samr.gov.cn/xw/zj/202207/t20220703_348326.html
https://static.cninfo.com.cn/finalpage/2022-08-23/1214356756.PDF
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to food producers, and the theoretical basis provided by the CSGNN detection results
will help regulators to establish food safety control strategies based on scientific principles
and strengthen the effectiveness of regulation of food producers. Thus, they are urged
to focus on the content of testing indicators that often lead to samples with hazardous
contamination in the production process. This can optimize the preventive principle of
hazard contamination in food production and processing, and efficiently supervise and
guide food producers’ benign production to minimize the occurrence of food hazard
contamination accidents.

6. Conclusions and Future Work

This paper proposes applying GNN-based contrastive self-supervised learning to
contamination warning and control of food quality. This is the first attempt at GNN-based
self-supervised learning in food safety early warning analysis. We innovatively proposed
an end-to-end contamination assessment framework for food quality called CSGNN. The
framework directly models the complex feature associations between the detection data.
It uses contrastive self-supervised learning to construct positive and negative instance
pairs to train the detection data of category imbalance. Finally realizes the detection of
unqualified samples and the contamination level of qualified samples by obtaining the
contamination value of each detection sample. We applied the framework to a batch
of sterilized milk detection data in a province in China, and its recall of unqualified
samples and AUC values reached 1.0000 and 0.9188, respectively, which indicates that
our framework can detect all unqualified samples and show better stability and lower
false detection rate in the practical application of data category imbalance. Experimental
results show that the CSGNN framework successfully mines the attribute information and
structural information between different indicators of food detection data, and the final
contamination value of the detection sample reflects its contamination level well to achieve
efficiently. Our research provides new ideas for contamination assessment of food quality,
and food safety regulators can make more efficient decisions based on CSGNN detection
results combined with expert panels.

There is a degree of subjective interference in the parameters of CSGNN in contamina-
tion classification (which is set to 0.5 by default when a more conservative boundary value
U between contaminated and negligible contamination samples is not observable in the
detection data). In future work, we will further explore using a parameter-free approach to
risk ranking to ensure the objectivity of the process, e.g., data analysis of contamination
values of samples utilizing mathematical statistics to determine the contamination rank
of each sample. In addition, we will more fully consider information on food hazard
contamination and toxicology to optimize the contamination assessment model for food
quality in subsequent studies.
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